Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93.212
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631714

RESUMO

BACKGROUND: Lymphocytic choriomeningitis virus (LCMV) belongs to the Arenavirus family known for inducing strong cytotoxic T-cell responses in both mice and humans. LCMV has been engineered for the development of cancer immunotherapies, currently undergoing evaluation in phase I/II clinical trials. Initial findings have demonstrated safety and an exceptional ability to activate and expand tumor-specific T lymphocytes. Combination strategies to maximize the antitumor effectiveness of LCMV-based immunotherapies are being explored. METHODS: We assessed the antitumor therapeutic effects of intratumoral administration of polyinosinic:polycytidylic acid (poly(I:C)) and systemic vaccination using an LCMV-vector expressing non-oncogenic versions of the E6 and E7 antigens of human papillomavirus 16 (artLCMV-E7E6) in a bilateral model engrafting TC-1/A9 cells. This cell line, derived from the parental TC-1, exhibits low MHC class I expression and is highly immune-resistant. The mechanisms underlying the combination's efficacy were investigated through bulk RNA-seq, flow cytometry analyses of the tumor microenvironment, selective depletions using antibodies and clodronate liposomes, Batf3 deficient mice, and in vivo bioluminescence experiments. Finally, we assessed the antitumor effectiveness of the combination of artLCMV-E7E6 with BO-112, a GMP-grade poly(I:C) formulated in polyethyleneimine, currently under evaluation in clinical trials. RESULTS: Intratumoral injection of poly(I:C) enhanced the antitumor efficacy of artLCMV-E7E6 in both injected and non-injected tumor lesions. The combined treatment resulted in a significant delay in tumor growth and often complete eradication of several tumor lesions, leading to significantly improved survival compared with monotherapies. While intratumoral administration of poly(I:C) did not impact LCMV vector biodistribution or transgene expression, it significantly modified leucocyte infiltrates within the tumor microenvironment and amplified systemic efficacy through proinflammatory cytokines/chemokines such as CCL3, CCL5, CXCL10, TNF, IFNα, and IL12p70. Upregulation of MHC on tumor cells and a reconfiguration of the gene expression programs related to tumor vasculature, leucocyte migration, and the activation profile of tumor-infiltrating CD8+ T lymphocytes were observed. Indeed, the antitumor effect relied on the functions of CD8+ T lymphocytes and macrophages. The synergistic efficacy of the combination was further confirmed when BO-112 was included. CONCLUSION: Intratumoral injection of poly(I:C) sensitizes MHClow tumors to the antitumor effects of artLCMV-E7E6, resulting in a potent therapeutic synergy.


Assuntos
Vírus da Coriomeningite Linfocítica , Neoplasias , Poli I-C , Animais , Humanos , Camundongos , Injeções Intralesionais , Distribuição Tecidual , Imunoterapia/métodos , Adjuvantes Imunológicos , Microambiente Tumoral
2.
Int J Nanomedicine ; 19: 3623-3639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660023

RESUMO

Introduction: Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site. Methods: Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model. Results: Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart. Conclusion: EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doxorrubicina , Doxorrubicina/análogos & derivados , Receptores ErbB , Neoplasias Pulmonares , Polietilenoglicóis , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem , Receptores ErbB/metabolismo , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Feminino
3.
Int J Nanomedicine ; 19: 3589-3605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645464

RESUMO

Purpose: This study aimed to develop a novel and feasible modification strategy to improve the solubility and antitumor activity of resiquimod (R848) by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-ß-CD). Methods: R848-loaded PLGA nanoparticles modified with 2-HP-ß-CD (CD@R848@NPs) were synthesized using an enhanced emulsification solvent-evaporation technique. The nanoparticles were then characterized in vitro by several methods, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, particle size analysis, and zeta potential analysis. Then, the nanoparticles were loaded with IR-780 dye and imaged using an in vivo imaging device to evaluate their biodistribution. Additionally, the antitumor efficacy and underlying mechanism of CD@R848@NPs in combination with an anti-TNFR2 antibody were investigated using an MC-38 colon adenocarcinoma model in vivo. Results: The average size of the CD@R848@NPs was 376 ± 30 nm, and the surface charge was 21 ± 1 mV. Through this design, the targeting ability of 2-HP-ß-CD can be leveraged and R848 is delivered to tumor-supporting M2-like macrophages in an efficient and specific manner. Moreover, we used an anti-TNFR2 antibody to reduce the proportion of Tregs. Compared with plain PLGA nanoparticles or R848, CD@R848@NPs increased penetration in tumor tissues, dramatically reprogrammed M1-like macrophages, removed tumors and prolonged patient survival. Conclusion: The new nanocapsule system is a promising strategy for targeting tumor, reprogramming tumor -associated macrophages, and enhancement immunotherapy.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Neoplasias do Colo , Imidazóis , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Macrófagos Associados a Tumor , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Animais , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Macrófagos Associados a Tumor/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Humanos , Distribuição Tecidual , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Tamanho da Partícula , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
4.
Cells ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667306

RESUMO

Several studies have reported the successful use of bio-orthogonal catalyst nanoparticles (NPs) for cancer therapy. However, the delivery of the catalysts to the target tissues in vivo remains an unsolved challenge. The combination of catalytic NPs with extracellular vesicles (EVs) has been proposed as a promising approach to improve the delivery of therapeutic nanomaterials to the desired organs. In this study, we have developed a nanoscale bio-hybrid vector using a CO-mediated reduction at low temperature to generate ultrathin catalytic Pd nanosheets (PdNSs) as catalysts directly inside cancer-derived EVs. We have also compared their biodistribution with that of PEGylated PdNSs delivered by the EPR effect. Our results indicate that the accumulation of PdNSs in the tumour tissue was significantly higher when they were administered within the EVs compared to the PEGylated PdNSs. Conversely, the amount of Pd found in non-target organs (i.e., liver) was lowered. Once the Pd-based catalytic EVs were accumulated in the tumours, they enabled the activation of a paclitaxel prodrug demonstrating their ability to carry out bio-orthogonal uncaging chemistries in vivo for cancer therapy.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animais , Catálise , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paládio/química , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linhagem Celular Tumoral , Distribuição Tecidual , Polietilenoglicóis/química , Nanopartículas/química , Pró-Fármacos , Camundongos Nus
5.
Bioorg Med Chem ; 104: 117697, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599005

RESUMO

Sphingosine-1-phosphate and its receptors (S1PRs) are involved in several diseases such as auto immunity, inflammation and cardiovascular disorders. The S1P analogue fingolimod (Gilenya®) is currently in use for the treatment of relapsing multiple sclerosis. S1PRs are also promising targets for clinical molecular imaging in vivo. The organ distribution of individual S1PRs can be potentially achieved by using S1PR subtype-specific (radiolabeled) chemical probes. Here, we report our efforts on synthesis and in vivo potency determination of new ligands for the S1P receptor 3 (S1P3) based on the S1P3 antagonist TY-52156 and in validation of a potential imaging tracer in vivo using Positron Emission Tomography (PET) after 18F-labelling. A p-fluorophenyl derivative exhibited excellent S1P3 antagonist activity in vitro, good serum stability, and medium lipophilicity. In vivo biodistribution experiments using 18F-PET exhibited significant uptake in the myocardium suggesting potential applications in cardiac imaging.


Assuntos
Cloridrato de Fingolimode , Tomografia por Emissão de Pósitrons , Receptores de Esfingosina-1-Fosfato , Cloridrato de Fingolimode/farmacologia , Lisofosfolipídeos , Tomografia por Emissão de Pósitrons/métodos , Receptores de Lisoesfingolipídeo/metabolismo , Distribuição Tecidual
6.
Zhongguo Zhong Yao Za Zhi ; 49(4): 932-941, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621900

RESUMO

This study explored the biosynthesis of bufadienolides(BDs) in Bufo bufo gargarizans to solve the dilemma of the decreasing resources of B. bufo gargarizans and provide a theoretical basis for the sustainable utilization of the resources. Ultra-high performance liquid chromatography-Orbitrap-mass spectrometry(UHPLC-Orbitrap-MS) was employed to detect the synthesis sites of BDs in B. bufo gargarizans, and the results were verified by desorption electrospray ionization-mass spectrometry imaging(DESI-MSI) and homogenate incubation experiments. BDs in B. bufo gargarizans had the highest content in the liver and the highest concentration in the gallbladder, in addition to the parotid gland and skin, which suggested that the liver could synthesize BDs. The results of DESI-MSI also showed that BDs were mainly enriched in the liver rather than the immature parotid gland. The incubation experiment of liver homogenates demonstrated the liver of B. bufo gargarizans had the ability to synthesize BDs. This study showed that the liver was a major organ for the synthesis of BDs in B. bufo gargarizans during metamorphosis, development, and growth, which provided strong theoretical support for the biosynthesis of BDs and the sustainable utilization of B. bufo gargarizans resources.


Assuntos
Bufanolídeos , Animais , Bufo bufo , Distribuição Tecidual , Bufonidae , Espectrometria de Massas por Ionização por Electrospray
7.
PLoS One ; 19(4): e0299215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626093

RESUMO

Non-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses. Here we characterize the magnitude, duration, and organ biodistribution of transgene expression after single intramuscular administration of adenovirus 26-based vector vaccines in mice and evaluate the differences with adenovirus 5-based vector vaccine to understand if this is universally applicable across serotypes. We demonstrate a correlation between peak transgene expression early after adenovirus 26-based vaccination and transgene-specific cellular and humoral immune responses for a model antigen and SARS-CoV-2 spike protein, independent of innate immune activation. Notably, the memory immune response was similar in mice immunized with adenovirus 26-based vaccine and adenovirus 5-based vaccine, despite the latter inducing a higher peak of transgene expression early after immunization and a longer duration of transgene expression. Together these results provide further insights into the mode of action of adenovirus 26-based vector vaccines.


Assuntos
Vacinas contra Adenovirus , Glicoproteína da Espícula de Coronavírus , Vacinas , Animais , Camundongos , Humanos , Imunidade Humoral , Distribuição Tecidual , Imunização , Vacinação , Adenoviridae/genética , Transgenes , Vetores Genéticos/genética , Anticorpos Antivirais
8.
Int J Nanomedicine ; 19: 3009-3029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562610

RESUMO

Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods: Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results: In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion: We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response.


Assuntos
Neoplasias da Mama , Nanopartículas , Taxoides , Humanos , Feminino , Portadores de Fármacos , Distribuição Tecidual , Cianoacrilatos , Neoplasias da Mama/tratamento farmacológico , Ácido Fólico , Linhagem Celular Tumoral , Microambiente Tumoral
9.
J Nanobiotechnology ; 22(1): 144, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566094

RESUMO

Improving the efficiency of antiseizure medication entering the brain is the key to reducing its peripheral toxicity. A combination of intranasal administration and nanomedicine presents a practical approach for treating epileptic seizures via bypassing the blood-brain barrier. In this study, phenytoin (PHT) loaded layered double hydroxide nanoparticles (BSA-LDHs-PHT) were fabricated via a coprecipitation - hydrothermal method for epileptic seizure control. In this study, we expound on the preparation method and characterization of BSA-LDHs-PHT. In-vitro drug release experiment shows both rapid and continuous drug release from BSA-LDHs-PHT, which is crucial for acute seizure control and chronic epilepsy therapy. In-vivo biodistribution assays after intranasal administration indicate excellent brain targeting ability of BSA-LDHs. Compared to BSA-Cyanine5.5, BSA-LDHs-Cyanine5.5 were associated with a higher brain/peripheral ratio across all tested time points. Following intranasal delivery with small doses of BSA-LDHs-PHT, the latency of seizures in the pentylenetetrazole-induced mouse models was effectively improved. Collectively, the present study successfully designed and applied BSA-LDHs-PHT as a promising strategy for treating epileptic seizures with an enhanced therapeutic effect.


Assuntos
Epilepsia , Nanopartículas , Camundongos , Animais , Fenitoína/farmacologia , Fenitoína/uso terapêutico , Administração Intranasal , Distribuição Tecidual , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Nanopartículas/uso terapêutico , Hidróxidos/uso terapêutico
10.
Stem Cell Res Ther ; 15(1): 96, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570892

RESUMO

BACKGROUND: Ovarian ageing is one of the major issues that impacts female fertility. Mesenchymal stem cell (MSC)-based therapy has made impressive progress in recent years. However, the efficacy and safety of MSCs, as nonautologous components, remain to be further verified. METHODS: Two common sources of MSCs, umbilical cord-derived MSCs (UC-MSCs) and adipose tissue-derived MSCs (AD-MSCs), were orthotopically transplanted into a mouse model of ovarian ageing to evaluate their therapeutic effects. The safety of the treatment was further evaluated, and RNA sequencing was performed to explore the underlying mechanisms involved. RESULTS: After orthotopic transplantation of MSCs into the ovary, the oestrous cycle, ovarian weight, number and proportion of primary follicles, granulosa cell proliferation, and angiogenesis were improved. The effects of AD-MSCs were superior to those of UC-MSCs in several indices, such as post-transplant granulosa cell proliferation, ovarian weight and angiogenesis. Moreover, the tumorigenesis, acute toxicity, immunogenicity and biodistribution of MSCs were evaluated, and both AD-MSCs and UC-MSCs were found to possess high safety profiles. Through RNA sequencing analysis, enhancement of the MAPK cascade was observed, and long-term effects were mainly linked to the activation of immune function. CONCLUSIONS: Orthotopic transplantation of MSCs displays significant efficacy and high safety for the treatment of ovarian ageing in mice.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Animais , Feminino , Ovário/metabolismo , Distribuição Tecidual , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Cordão Umbilical
11.
Sci Rep ; 14(1): 7934, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575614

RESUMO

Biodistribution tests are crucial for evaluating the safety of cell therapy (CT) products in order to prevent unwanted organ homing of these products in patients. Quantitative polymerase chain reaction (qPCR) using intronic Alu is a popular method for biodistribution testing owing to its ability to detect donor cells without modifying CT products and low detection limit. However, Alu-qPCR may generate inaccurate information owing to background signals caused by the mixing of human genomic DNA with that of experimental animals. The aim of this study was to develop a test method that is more specific and sensitive than Alu-qPCR, targeting the mitochondrial DNA (mtDNA) sequence that varies substantially between humans and experimental animals. We designed primers for 12S, 16S, and cytochrome B in mtDNA regions, assessed their specificity and sensitivity, and selected primers and probes for the 12S region. Human adipose-derived stem cells, used as CT products, were injected into the tail vein of athymic NCr-nu/nu mice and detected, 7 d after administration, in their lungs at an average concentration of 2.22 ± 0.69 pg/µg mouse DNA, whereas Alu was not detected. Therefore, mtDNA is more specific and sensitive than Alu and is a useful target for evaluating CT product biodistribution.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , Camundongos , Animais , DNA Mitocondrial/genética , Distribuição Tecidual , Primers do DNA , Mitocôndrias/genética
12.
J Comput Aided Mol Des ; 38(1): 19, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630341

RESUMO

Scaffold replacement as part of an optimization process that requires maintenance of potency, desirable biodistribution, metabolic stability, and considerations of synthesis at very large scale is a complex challenge. Here, we consider a set of over 1000 time-stamped compounds, beginning with a macrocyclic natural-product lead and ending with a broad-spectrum crop anti-fungal. We demonstrate the application of the QuanSA 3D-QSAR method employing an active learning procedure that combines two types of molecular selection. The first identifies compounds predicted to be most active of those most likely to be well-covered by the model. The second identifies compounds predicted to be most informative based on exhibiting low predicted activity but showing high 3D similarity to a highly active nearest-neighbor training molecule. Beginning with just 100 compounds, using a deterministic and automatic procedure, five rounds of 20-compound selection and model refinement identifies the binding metabolic form of florylpicoxamid. We show how iterative refinement broadens the domain of applicability of the successive models while also enhancing predictive accuracy. We also demonstrate how a simple method requiring very sparse data can be used to generate relevant ideas for synthetic candidates.


Assuntos
Produtos Biológicos , Aprendizagem Baseada em Problemas , Distribuição Tecidual , Lactonas , Piridinas
13.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612427

RESUMO

Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand's total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed.


Assuntos
Fabaceae , Tecnécio , Animais , Camundongos , Distribuição Tecidual , Ligantes , Quelantes , Ácido Glutâmico , Glicina
14.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612553

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an extensively studied cell type in clinical trials due to their easy availability, substantial ex vivo proliferative capacity, and therapeutic efficacy in numerous pre-clinical animal models of disease. The prevailing understanding suggests that their therapeutic impact is mediated by the secretion of exosomes. Notably, MSC exosomes present several advantages over MSCs as therapeutic agents, due to their non-living nature and smaller size. However, despite their promising therapeutic potential, the clinical translation of MSC exosomes is hindered by an incomplete understanding of their biodistribution after administration. A primary obstacle to this lies in the lack of robust labels that are highly sensitive, capable of directly and easily tagging exosomes with minimal non-specific labeling artifacts, and sensitive traceability with minimal background noise. One potential candidate to address this issue is radioactive iodine. Protocols for iodinating exosomes and tracking radioactive iodine in live imaging are well-established, and their application in determining the biodistribution of exosomes has been reported. Nevertheless, the effects of iodination on the structural or functional activities of exosomes have never been thoroughly examined. In this study, we investigate these effects and report that these iodination methods abrogate CD73 enzymatic activity on MSC exosomes. Consequently, the biodistribution of iodinated exosomes may reflect the biodistribution of denatured exosomes rather than functionally intact ones.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Neoplasias da Glândula Tireoide , Animais , Radioisótopos do Iodo , Distribuição Tecidual
15.
Cells ; 13(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38607008

RESUMO

PURPOSE OF THIS REVIEW: Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS: Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY: The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.


Assuntos
Nanomedicina , Traumatismos da Medula Espinal , Humanos , Distribuição Tecidual , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Medicina Regenerativa
16.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607332

RESUMO

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Assuntos
Doença de Alzheimer , Encéfalo , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores sigma , 60610 , Receptores sigma/metabolismo , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Masculino , Imagem Molecular/métodos , Halogenação , Distribuição Tecidual , Humanos
17.
J Nanobiotechnology ; 22(1): 168, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610015

RESUMO

BACKGROUND: Oral cancer is the most common malignant tumor of the head and neck, and 90% of cases are oral squamous cell carcinoma (OSCC). Chemotherapy is an important component of comprehensive treatment for OSCC. However, the clinical treatment effect of chemotherapy drugs, such as doxorubicin (DOX), is limited due to the lack of tumor targeting and rapid clearance by the immune system. Thus, based on the tumor-targeting and immune evasion abilities of macrophages, macrophage membrane-encapsulated poly(methyl vinyl ether alt maleic anhydride)-phenylboronic acid-doxorubicin nanoparticles (MM@PMVEMA-PBA-DOX NPs), briefly as MM@DOX NPs, were designed to target OSCC. The boronate ester bonds between PBA and DOX responded to the low pH value in the tumor microenvironment, selectively releasing the loaded DOX. RESULTS: The results showed that MM@DOX NPs exhibited uniform particle size and typical core-shell structure. As the pH decreased from 7.4 to 5.5, drug release increased from 14 to 21%. The in vitro targeting ability, immune evasion ability, and cytotoxicity of MM@DOX NPs were verified in HN6 and SCC15 cell lines. Compared to free DOX, flow cytometry and fluorescence images demonstrated higher uptake of MM@DOX NPs by tumor cells and lower uptake by macrophages. Cell toxicity and live/dead staining experiments showed that MM@DOX NPs exhibited stronger in vitro antitumor effects than free DOX. The targeting and therapeutic effects were further confirmed in vivo. Based on in vivo biodistribution of the nanoparticles, the accumulation of MM@DOX NPs at the tumor site was increased. The pharmacokinetic results demonstrated a longer half-life of 9.26 h for MM@DOX NPs compared to 1.94 h for free DOX. Moreover, MM@DOX NPs exhibited stronger tumor suppression effects in HN6 tumor-bearing mice and good biocompatibility. CONCLUSIONS: Therefore, MM@DOX NPs is a safe and efficient therapeutic platform for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Distribuição Tecidual , Macrófagos , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio , Microambiente Tumoral
18.
J Med Chem ; 67(8): 6726-6737, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570733

RESUMO

Cyclin-dependent kinase 19 (CDK19) is overexpressed in prostate cancer, making it an attractive target for both imaging and therapy. Since little is known about the optimized approach for radioligands of nuclear proteins, linker optimization strategies were used to improve pharmacokinetics and tumor absorption, including the adjustment of the length, flexibility/rigidity, and hydrophilicity/lipophilicity of linkers. Molecular docking was conducted for virtual screening and followed by IC50 determination. Both BALB/c mice and P-16 xenografts were used for tissue distribution and PET/CT imaging. The ligand 68Ga-10c demonstrated high absorption in tumor 5 min after injection and sustains long-term imaging within 3 h. Furthermore, 68Ga-10c exhibited slow clearance within the tumor and was predominantly metabolized in both the liver and kidneys, showing the potential to alleviate metabolic pressure and enhance tissue safety. Therefore, the linker optimization strategy is well suited for CDK19 and provides a reference for the radioactive ligands of other nuclear targets.


Assuntos
Quinases Ciclina-Dependentes , Camundongos Endogâmicos BALB C , Animais , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Humanos , Camundongos , Masculino , Simulação de Acoplamento Molecular , Desenho de Fármacos , Distribuição Tecidual , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral
19.
Environ Health Perspect ; 132(4): 47005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598326

RESUMO

BACKGROUND: Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES: This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS: To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5µm) microspheres or a mixture of polymer microspheres consisting of polystyrene (5µm), polyethylene (1-4µm), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5µm). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4mg/week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS: In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION: This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Microesferas , Plásticos , Distribuição Tecidual , Microplásticos , Poluentes Químicos da Água/análise
20.
Sci Adv ; 10(15): eadj1444, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598637

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs. Functional upstream domain (FUD) tightly binds the N-terminal 70-kilodalton domain of FN that is crucial for FN assembly. In this study, we first demonstrate the capacity of PEGylated FUD (PEG-FUD) to target FN deposition in human IPF tissue ex vivo. We subsequently radiolabeled PEG-FUD with 64Cu and monitored its spatiotemporal biodistribution via µPET/CT imaging in mice using the bleomycin-induced model of pulmonary injury and fibrosis. We demonstrated [64Cu]Cu-PEG-FUD uptake 3 and 11 days following bleomycin treatment, suggesting that radiolabeled PEG-FUD holds promise as an imaging probe in aiding the assessment of fibrotic lung disease activity.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Distribuição Tecidual , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Peptídeos/metabolismo , Bleomicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...